
Neural Network
Approximation

Low rank, Sparsity, and Quantization
zsc@megvii.com

Oct. 2017

mailto:zsc@megvii.com

Motivation
● Faster Inference

○ Latency critical scenarios
■ VR/AR, UGV/UAV

○ Saves time and energy

● Faster Training
○ Higher iteration speed
○ Saves life

● Smaller
○ storage size
○ memory footprint

Lee Sedol v.s. AlphaGo
77 kWatt83 Watt

Neural Network

Machine Learning as Optimization

● Supervised learning
○ is the parameter
○ is output, X is input
○ y is ground truth
○ d is the objective function

● Unsupervised learning
○ some oracle function r: low rank, sparse, K

Machine Learning as Optimization

● Regularized supervised learning
○

● Probabilistic interpretation
○ d measures conditional probability
○ r measures prior probability
○ Probability approach is more constrained than the

optimization-approach due to normalization problem
■ Not easy to represent uniform distribution over [0,

\infty]

● Can be solved by an ODE:
○ Discretizing with step length we get gradient

descent with learning rate
○

● Convergence proof

Gradient descent

Derive

Linear Regression

●
○
○
○ x is input, \hat{y} is prediction, y is

ground truth.
○ W with dimension (m,n)
○ #param = m n, #OPs = m n

Fully-connected

●
○ In general, will use nonlinearity

to increase “model capacity”.
○ Make sense if f is identity? I.e.

f(x) = x?
■ Sometimes, if W_2 is m by r and

W_1 is r by n, then W_2 W_1 is a
matrix of rank r, which is different
from a m by n matrix.

●
○ Deep learning!

Neural Network

X

yCost
d + r

Activations/
Feature maps/
Neurons

● Can be solved by an ODE:
○ Discretizing with step length we get gradient

descent with learning rate
○

● Convergence proof

Gradient descent

Derive

Backpropagation

Neural Network Training

X

yCost
d + r

Activations/
Feature maps/
Neurons

Gradients

CNN: Alexnet-like

Method 2: Convolution as matrix product
● Convolution

○ feature map <N, C, H’, W’>
○ weights <K, C, H, W>

● Convolution as FC
○ under proper padding, can extract patchs
○ feature map <N H’ W’, C H W>
○ weights <C H W, K>

Kernel stride
determines
how much
overlap

Height

Width

Importance of Convolutions and FC

Feature map size

Neupack: inspect_model.py
NeuPeak: npk-model-manip XXX info

Most storage
size

Most
Computation

The Matrix View of Neural Network

● Weights of FullyConnected and
Convolutions layers
○ take up most computation and storage size
○ are representable as matrices

● Approximating the matrices approximates
the network
○ The approximation error accumulates.

Low rank Approximation

Singular Value Decomposition
● Matrix deocomposition view

○ A = U S V^T
○ Rows of U, V are orthogonal. S is diagonal.

■ u, s, v^T = np.linalg.svd(x, full_matrices=0,compute_uv=1)
■ The diagonals are non-negative and are in descending order.
■ U^T U = I, but U U^T is not full rank

Compact SVD

Truncated SVD
● Assume diagonals of S are in descending order

○ Always achievable
○ Just ignore the blue segments.

Matrix factorization => Convolution factorization
● Factorization into HxW followed by 1x1

○ feature map (N H’ W’, C H W)
○ first conv weights (C H W, R)
○ feature map (N H’ W’, R)
○ second conv weights (R, K)
○ feature map (N H’ W’, K)

HxW

HxW

1x1

K

K

C

C

R

K K

CHW

R

R

CHW

Approximating Convolution Weight

● W is a (K, C, H, W) 4-tensor
○ can be reshaped to a (CHW, K) matrix, etc.

● F-norm is invariant under reshape
○

W W_a

M M_a

reshape reshape

approximate

Matrix factorization => Convolution factorization
● Factorization into 1x1 followed by HxW

○ feature map (N H’ W’ H W, C)
○ first conv weights (C, R)
○ feature map (N H’ W’ H W, R) = (N H’ W’, R H W)
○ second conv weights (R H W, K)
○ feature map (N H’ W’, K)

● Steps
○ Reshape (CHW, K) to (C, HW, K)
○ (C, HW, K) = (C, R) (R, HW, K)
○ Reshape (R, HW, K) to (RHW, K)

1x1

HxW

HxW

C

R

K

C

K

Horizontal-Vertical Decomposition
● Approximating with Separable Filters
● Original Convolution

○ feature map (N H’ W’, C H W)
○ weights (C H W, K)

● Factorization into Hx1 followed by 1xW
○ feature map (N H’ W’ W, C H)
○ first conv weights (C H, R)
○ feature map (N H’ W’ W, R) = (N H’ W’, R W)
○ second conv weights (R W, K)
○ feature map (N H’ W’, K)

● Steps
○ Reshape (CHW, K) to (CH, WK)
○ (CH, WK) = (CH, R) (R, WK)
○ Reshape (R, WK) to (RW, K)

Hx1

HxW

1xW

C

K

C

K

R

Factorizing N-D convolution
● Original Convolution

○ let dimension be N
○ feature map (N D’_1 D’_2 … D’_Z, C D_1 D_2 … D_N)
○ weights (C D_1 D_2 … D_N, K)

● Factorization into N number of D_i x1
○ R_0 = C, R_Z = K
○ feature map (N D’_1 D’_2 … D’_Z, C D_1 D_2 … D_N)
○ weights (R_0 D_1, R_1)
○ feature map (N D’_1 D’_2 … D’_Z, R_1 D_2 … D_N)
○ weights (R_1 D_2, R_2)
○ ...

Hx1x1

HxWxZ

1xWx1

C

K

C

R2

R1

1x1xZ

Z

SVD

Kronecker
Product

+

Kronecker Conv
● (C H W, K)
● Reshape as (C_1 C_2 H W, K_1 K_2)
● Steps

○ Feature map is (N C H’ W’)
○ Extract patches and reshape (N H’ W’ C_2, C_1 H)
○ apply (C_1 H, K_1 R)
○ Feature map is (N K_1 R H’ W’ C_2)
○ Extract patches and reshape (N K_1 H’ W’, R C_2 W)
○ apply (R C_2 W, K_2)

● For rank efficiency, should have
○ R C_2 \approx C_1

Exploiting Local Structures with the Kronecker Layer
in Convolutional Networks 1512

https://arxiv.org/abs/1512.09194

Shared Group Convolution is a Kronecker Layer

AlexNet partitioned a conv

Conv/FC Shared Group
Conv/FC

CP-decomposition and Xception
● Xception: Deep Learning with Depthwise Separable Convolutions 1610
● CP-decomposition with Tensor Power Method forConvolutional Neural

Networks Compression 1701
● MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications 1704
○ They submitted the paper to CVPR about the same time as Xception.

https://arxiv.org/abs/1610.02357
https://arxiv.org/pdf/1701.07148.pdf
https://arxiv.org/abs/1704.04861

Matrix Joint Diagonalization = CP

ST

T1T1T1
S3S2S1

CP

MJD

HxW

C

K

C

HxW

K

CP-decomposition with Tensor Power Method for
Convolutional Neural Networks Compression 1701

Convolution

Xception

Channel-wise

https://arxiv.org/pdf/1701.07148.pdf

Tensor Train Decomposition

Tensor Train Decomposition: just a few SVD’s

Tensor Train Decomposition on FC

Graph Summary of SVD variants

Matrix Product State

CNN layers as Multilinear Maps

Sparse Approximation

Distribution of Weights
● Universal across convolutions and FC
● Concentration of values near 0
● Large values cannot be dropped

Sparsity of NN: statistics

Sparsity of NN: statistics

Weight Pruning: from DeepCompression
TrainNetwork Extract

Mask M TrainW => M o W ...

The model has been trained
with exccessive #epoch.

https://arxiv.org/abs/1510.00149

Sparse Matrix at Runtime
● Sparse Matrix = Discrete Mask + Continuous

values
○ Mask cannot be learnt the normal way
○ The values have well-defined gradients

● The matrix value look up need go through a LUT
○ CSR format

■ A: NNZ values
■ IA: accumulated #NNZ of rows
■ JA: the column in the row

Burden of Sparseness
● Lost of regularity of memory access and computation

○ Need special hardware for efficient access
○ May need high zero ratio to match dense matrix

■ Matrices will less than 70% zero values, better to treat as dense matrices.

Convolution layers are harder to compress than FC

Dynamic Generation of Code
● CVPR’15: Sparse Convolutional Neural Networks
● Relies on compiler for

○ register allocation
○ scheduling

● Good on CPU

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Sparse_Convolutional_Neural_2015_CVPR_paper.pdf

Channel Pruning

● Learning the Number of Neurons in Deep Networks 1611

● Channel Pruning for Accelerating Very Deep Neural Networks 1707
○ Also exploits low-rankness of features

https://arxiv.org/pdf/1611.06321.pdf
https://arxiv.org/abs/1707.06168

Sparse Communication for Distributed Gradient
Descent 1704

https://arxiv.org/pdf/1704.05021.pdf

Quantization

Precursor: Ising model & Boltzmann machine
● Ising model

○ used to model magnetics
○ 1D has trivial analytic solution
○ 2D exhibits phase-transition
○ 2D Ising model can be used for denoising

■ when the mean signal is reliable

● Inference also requires optimization

Neural Network Training

X

yCost
d + r

Activations/
Feature maps/
Neurons

Gradients

Quantized Quantized

Quantized

Backpropagation

There will be no
gradient flow if we
quantize somewhere!

Differentiable Quantization

● Bengio ’13: Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation
○ REINFORCE algorithm
○ Decompose binary stochastic neuron into stochastic and

differentiable part
○ Injection of additive/multiplicative noise
○ Straight-through estimator

Gradient vanishes after quantization.

Quantization also at Train time
● Neural Network can adapt to the constraints imposed by quantization
● Exploits “Straight-through estimator” (Hinton, Coursera lecture, 2012)

○
○
○
○
○

● Example

Bit Neural Network
● Matthieu Courbariaux et al. BinaryConnect: Training Deep Neural Networks with binary

weights during propagations. http://arxiv.org/abs/1511.00363
● Itay Hubara et al. Binarized Neural Networks https://arxiv.org/abs/1602.02505v3
● Matthieu Courbariaux et al. Binarized Neural Networks: Training Neural Networks with

Weights and Activations Constrained to +1 or -1. http://arxiv.org/pdf/1602.02830v3.pdf
● Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural

Networks http://arxiv.org/pdf/1603.05279v1.pdf
● Zhou et al. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with

Low Bitwidth Gradients https://arxiv.org/abs/1606.06160
● Hubara et al. Quantized Neural Networks: Training Neural Networks with Low Precision

Weights and Activations https://arxiv.org/abs/1609.07061

http://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1602.02505v3
http://arxiv.org/pdf/1602.02830v3.pdf
http://arxiv.org/pdf/1603.05279v1.pdf
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1609.07061

Binarizing AlexNet
Theoretical

Scaled binarization
●
●
● Sol:

= Varaince of rows of W o B

XNOR-Net

Binary weights network
● Filter repetition

○ 3x3 binary kernel has only 256 patterns modulo sign.
○ 3x1 binary kernel only has only 4 patterns modulo sign.
○ Not easily exploitable as we are applying CHW as filter

Binarizing AlexNet
Theoretical

Scaled binarization is no longer exact and not found
to be useful

The solution below is quite bad, like when Y = [-4, 1]

Quantization of Activations
● XNOR-net adopted STE method in their open-source our code

Input ReLU

Capped
ReLU QuantizationInput

DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients

● Uniform stochastic quantization of gradients
○ 6 bit for ImageNet, 4 bit for SVHN

● Simplified scaled binarization: only scalar
○ Forward and backward multiplies the bit matrices from different sides.
○ Using scalar binarization allows using bit operations

● Floating-point-free inference even when with BN
● Future work

○ BN requires FP computation during training
○ Require FP weights for accumulating gradients

SVHN

A B C D

A has two times as many channels as B.
B has two times as many channels as C.
...

Quantization Methods
● Deterministic Quantization

○
○

● Stochastic Quantizaiton
○
○
○
○

Injection of noise realizes the sampling.

Quantization of Weights, Activations and Gradients
● A half #channel 2-bit AlexNet (same bit complexity as XNOR-net)

Quantization Error measured by Cosine Similarity
● Wb_sn is n-bit quantizaiton of real W
● x is Gaussian R. V. clipped by tanh

Saturates

Effective Quantization Methods for Recurrent Neural
Networks 2016

Our FP baseline is worse than that of Hubara.

http://cn.arxiv.org/pdf/1611.10176v1
http://cn.arxiv.org/pdf/1611.10176v1

Training Bit Fully Convolutional Network for Fast
Semantic Segmentation 2016

http://cn.arxiv.org/pdf/1612.00212v1
http://cn.arxiv.org/pdf/1612.00212v1

FPGA is made up of many LUT's

TernGrad: Ternary Gradients to ReduceCommunication in
Distributed Deep Learning 1705

● Weights and activations not quantized.

https://arxiv.org/pdf/1705.07878.pdf

More References
● Xiangyu Zhang, Jianhua Zou, Kaiming He, Jian Sun: Accelerating Very Deep Convolutional Networks for Classification and Detection.

IEEE Trans. Pattern Anal. Mach. Intell. 38(10): 1943-1955 (2016)
● ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices https://arxiv.org/abs/1707.01083
● Aggregated Residual Transformations for Deep Neural Networks https://arxiv.org/abs/1611.05431
● Convolutional neural networks with low-rank regularization https://arxiv.org/abs/1511.06067

https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1511.06067

Backup after this slide

Slide also available at my home page:
https://zsc.github.io/

https://zsc.github.io/

Low-rankness of Activations
● Accelerating Very Deep Convolutional Networks for Classification and

Detection

